Presynaptic muscarinic receptors enhance glutamate release at the mitral/tufted to granule cell dendrodendritic synapse in the rat main olfactory bulb.
نویسندگان
چکیده
The mammalian olfactory bulb receives multiple modulatory inputs, including a cholinergic input from the basal forebrain. Understanding the functional roles played by the cholinergic input requires an understanding of the cellular mechanisms it modulates. In an in vitro olfactory bulb slice preparation we demonstrate cholinergic muscarinic modulation of glutamate release onto granule cells that results in gamma-aminobutyric acid (GABA) release onto mitral/tufted cells. We demonstrate that the broad-spectrum cholinergic agonist carbachol triggers glutamate release from mitral/tufted cells that activates both AMPA and NMDA receptors on granule cells. Activation of the granule cell glutamate receptors leads to calcium influx through voltage-gated calcium channels, resulting in spike-independent, asynchronous GABA release at reciprocal dendrodendritic synapses that granule cells form with mitral/tufted cells. This cholinergic modulation of glutamate release persists through much of postnatal bulbar development, suggesting a functional role for cholinergic inputs from the basal forebrain in bulbar processing of olfactory inputs and possibly in postnatal development of the olfactory bulb.
منابع مشابه
Organization of ionotropic glutamate receptors at dendrodendritic synapses in the rat olfactory bulb.
Dendrodendritic synapses between mitral (or tufted) and granule cells of the olfactory bulb play a major role in the processes of odor discrimination and olfactory learning. Release of glutamate at these synapses activates postsynaptic receptors on the dendritic spines of granule cells, as well as presynaptic NMDA receptors in the mitral cell membrane. However, immunocytochemical studies have f...
متن کاملGABA(B) receptors inhibit dendrodendritic transmission in the rat olfactory bulb.
In the mammalian olfactory bulb, mitral cell dendrites release glutamate onto the dendritic spines of granule cells, which in turn release GABA back onto mitral dendrites. This local synaptic circuit forms the basis for reciprocal dendrodendritic inhibition mediated by ionotropic GABA(A) receptors in mitral cells. Surprisingly little is known about neurotransmitter modulation of dendrodendritic...
متن کاملActivation of group I metabotropic glutamate receptors on main olfactory bulb granule cells and periglomerular cells enhances synaptic inhibition of mitral cells.
Granule and periglomerular cells in the main olfactory bulb express group I metabotropic glutamate receptors (mGluRs). The group I mGluR agonist 3,4-dihydroxyphenylglycine (DHPG) increases GABAergic spontaneous IPSCs (sIPSCs) in mitral cells, yet the presynaptic mechanism(s) involved and source(s) of the IPSCs are unknown. We investigated the actions of DHPG on sIPSCs and TTX-insensitive miniat...
متن کاملSniff-Like Patterned Input Results in Long-Term Plasticity at the Rat Olfactory Bulb Mitral and Tufted Cell to Granule Cell Synapse
During odor sensing the activity of principal neurons of the mammalian olfactory bulb, the mitral and tufted cells (MTCs), occurs in repetitive bursts that are synchronized to respiration, reminiscent of hippocampal theta-gamma coupling. Axonless granule cells (GCs) mediate self- and lateral inhibitory interactions between the excitatory MTCs via reciprocal dendrodendritic synapses. We have exp...
متن کاملDetecting activity in olfactory bulb glomeruli with astrocyte recording.
In the olfactory bulb, axons of olfactory sensory neurons (OSNs) expressing the same olfactory receptor converge on specific glomeruli. These afferents form axodendritic synapses with mitral/tufted and periglomerular cell dendrites, whereas the dendrites of mitral/tufted cells and periglomerular interneurons form dendrodendritic synapses. The two types of intraglomerular synapses appear to be s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 101 4 شماره
صفحات -
تاریخ انتشار 2009